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Abstract. Quantum-mechanical one-phonon-assisted sticking of4He on LiF and NaF is
considered underT-matrix formalism. The bound-state energies, lifetimes and corresponding
surface temperatures at which the sticking takes place are evaluated and compared with the
experimental results. The exactT-matrix approach is found to give better results even for
Morse-potential parameters.

1. Introduction

The process of adsorption and desorption of a gas at a solid surface is primarily controlled
by the molecular interactions between the particles making up the gas and the solid phases.
In adsorption experiments [1, 2] a clean solid surface is suddenly exposed to a gas, and the
build-up of the adsorbate, i.e. of those gas particles that are bound to the solid, is followed
as a function of time and characterized by an adsorption timeτs [3].

For low-energy incoming particles, the inelastic processes become very important and
responsible for sticking. Normally, if the coupling to the surface degrees of freedom is
considerable, the first-order perturbation theory may not give the correct results as the
successive phonon scattering may affect the particle wavefunction. The quantum reflection
effects which reduce the adsorption coefficient to zero in the limit of zero energy could very
well be destroyed by successive phonon interaction, and coupling to low-energy modes may
allow the exchange of the energy between the incoming particle and the surface, leading to
possible physisorption and inelastic scattering [4].

We therefore, conjecture that, for phonon-assisted scattering of a gas–solid interaction,
the lower-order distorted-wave Born approximation (DWBA) calculations may not be
adequate to explain the total inelastic component of the gas–solid interaction.

The purpose of the present work is therefore to take into account the proper corrections
to inelastic scattering and consequently to evaluate the sticking by taking the higher-order
terms in the scatteringT matrix of the system. We calculate the probability that the particle
ends up in a bound state (BS) after interaction with the surface, leading to emission of one
phonon. For phonon-assisted adsorption in which the one-phonon process is taking part, the
controlled adsorption process is completed after an equilibrium adsorbate has been built up
with the gas temperatureTg equal to the initial solid temperature and then suddenly lowered
by the emission of one phonon to a new solid temperatureTs , leading to the formation of
BS.
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We concentrate on phonon-mediated physisorption of gas particles at normal incidence
for low coverages at localized adsorption sites, assuming that interaction between the
adsorption sites is negligible.

We have proposed a Hamiltonian in terms of a localized and a phonon basis and changed
the phonon basis into the localized basis by a canonical transformation. Hence we obtain the
general theory for the temperature-dependent BS energy for the adsorbed system. The theory
developed can then be used to calculate the sticking and inelastically scattered intensities
for different BS of the systems.

The variation in BS energies with temperature obtained from theT-matrix pole has
already been reported earlier [5]. In the present case the problem has been extended to
study the sticking coefficient and the transient timeτs obtained from the imaginary part
of the T matrix. The transient time is much shorter than the quantum-mechanical time of
interaction for maximum sticking, as reported earlier [6]. The model potential chosen in
our calculation is the Morse potential which facilitates the comparison of our results with
the earlier reported values obtained using the same potential model. Model calculations
are carried out which include not only the DWBA but also the higher-order single-phonon
processes.

2. Theoretical model

The model Hamiltonian for the gas–solid system with localized and non-localized basis may
be written

H = Hg + Hs + Hdyn (1)

where Hg is the Hamiltonian of the non-interacting gas system in a box. For just one
shallow BS the three-dimensional theory can be reduced to one-dimensional theory. In
terms of the wavefunctionψ(x) of the gas we can write

Hg = − h̄2

2m

∫ (
ψ†

k(x)
d2

dx2
ψk(x)

)
dx. (2)

Now we introduce the second quantized creation operatorc
†
k annihilation operatorsck

in the state|k〉 through the expressions

ψk(x) =
∑

k

φk(x)ck

and

ψ†
k(x) =

∑
k

φ?
k(x)c

†
k

where the free-gas-particle wavefunction is

φk(x) =
√

2

L
sin(kx). (3)

The free-gas-particle wavefunction is taken as a real function normalized in a one-
dimensional box of lengthL and assumed to vanish at the solid surfacex = 0; hence

Hg =
∑

k

εkc
†
kck (4)
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where εk = h̄2k2/2m is the kinetic energy of the free gas particle. The second part of
Hamiltonian (1) is that of the solid which in the harmonic approximation may be written as

Hs =
∑
p

h̄ωpb†
pbp (5)

with b
†
p the creation operator andbp the annihilation operator of longitudinal acoustic

phonons of frequencyωp in the absence of gas.
The third term in equation (1) gives the gas–solid interaction. It consists of two parts:

a static part and a dynamic part. For small displacements,u is given by

u = (MsNs)
−1/2

∑
p

(
h̄

2ωp

(b†
p + bp)

)
(6)

with solid particle massMs and numberNs of particles in a normalized box of lengthL.
The first part of the gas–solid interaction potential leads to the static partHst

gs of Hgs and

the second part gives the dynamic partH
dyn
gs . Using the transformation by creation and

annihilaton operators as before we have

Hst
gs =

∑
p

εqc
†
qcq (7)

and hence

Hst = Hg + Hst
gs =

∑
k

εkc
†
kck +

∑
q

εqc
†
qcq . (8)

The Hamiltonian (8) is diagonalized by using the linear transformationck = ∑
q φq(k)cq .

Here q = 0 gives the localized BS andq > 0 gives the continuum state. With this
transformation we have

Hst =
∑

q

Eqc
†
qcq (9)

where Eq is the eigenvalue of the free-particle state and BS energyEn with n =
0, 1, 2, 3, . . . .

In fact the phonon-mediated gas–solid interaction is accounted for by the dynamic part
of the Hamiltonion which in the lowest-order harmonic approximation is given by

Hdyn =
∑

q,q−p

χq,q−pc
†
q−p

∑
p

ω−1/2
p (b†

p + bp)cq (10)

where for a local surface potential we have

χ(q, q − p) =
(

h̄

2MsNs

)−1/2 ∫
φ?

q−p(x)
dV0(x)

dx
φq(x) dx. (11)

Here theφq(x) are the eigenfunctions ofHst denoted by the eigenvalue equation(
− h̄2

2m

d2

dx2
+ V0(x)

)
φq(x) = Eqφq(x). (12)

Now with the help of equations (5), (8) and (9) the HamiltonianH in equation (1) takes
the form

H =
∑

q

Eqc
†
qcq +

∑
p

h̄ωpb†
pbp +

∑
q,q−p

χ(q − p, q)c
†
q−p

∑
p

ω−1/2
p (b†

p + b−p)cq. (13)
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Now we use the similarity transformationHs = exp(−s)H exps with the generating
function S given by [7]

〈n|s|m〉 = 〈n|Hdyn|m〉
Em − En

(14)

whereEm 6= En. This reduces the Hamiltonian (13) to

H =
∑

q

Eqc
†
qcq +

∑
p

h̄ωpb†
pbp + 1

2

∑
q,q ′

χ(q − p, q)χ(q ′ + p, q ′)λ2
pc

†
q ′+pcq ′c

†
q−pcq

×
(

1

(Eq − Eq−p − h̄ωp)
− 1

Eq ′ − Eq ′+p + h̄ωp

)
(15)

whereλ2
p = 1/ωp.

3. Sticking coefficient and lifetime

We have solved the Hamiltonian (15) for the He–NaF and He–LiF systems by the Green
function technique and obtained theT matrix for the systems. For just one shallow BS we
take the static surface potential as

V0(x) = U0{exp[−2γ (x − x0)] − 2 exp[−γ (x − x0)]}. (16)

Now in order to obtain the Dyson equation for the scatteringT matrix we write the
single-particle Green function as

Gkm(t) = 〈〈αk(t), α
†
m(0)〉〉 (17)

whereα
†
m andαk are the dummy operators for the creation and annihilation, respectively,

of localized particles.
The Green function may be written in the form of Dyson equation using the Hamiltonian

(15) and taking the Fourier transformation as

Gkk(E) = Gk(0) + Gk(0)TGkn(E) (18)

which on iteration leads to

Gkk(E) = G0(E) + G0(E)TG0(E) (19)

where

G0(E) = 1

2π(E − Ek)
T = 2π1k

/
1 −

∑
q

1q

(E − Eq)

1q =
∑
p

|χ(q, q − p)|2λ2
pnq−p

Eq − Eq−p − h̄ωp

. (20)

Hereq is the momentum of the gas particle in the localized state andq −p is that in the BS.
E is the effective final energy with transformed BS energyEn′ due to gas–solid interaction
plus the phonon energy.

The relative gas atom occupation number in the substrate maintained at temperatureT

is

nq−p = exp[β(En′ − µ)] � 1 (21)

with β = 1/kBT andµ the chemical potential of the gas which consists ofN particles in
a one-dimensional box of lengthL and is defined as

exp(−βµ) = L

N

(
2πkBT m

h2

)1/2

. (22)
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Now, while evaluating|χ(q, p)|2, we consider the dimensionless parameters as [8]

σ 2
0 = 2mU0

h̄2γ 2
S2

n = 2m|En|
h̄2γ 2

r = 2mωd

h̄γ 2
ξ = γ x ξ0 = γ0x0

and we get the normalized BS wavefunction asφn(x) = √
γ fn(ξ) with

fn(ξ) = (2σ0)
Sn0(−1/2)(2Sn)

(
2Sn + n

n

)−1/2

exp{−α0 exp[−(ξ − ξ0)]}

× exp[−Sn(ξ − ξ0)] L2Sn

n {2σ0 exp[−(ξ − ξ0)]} (23)

whereSn = σ0 − n − 1
2, with n = 0, 1, 2 . . . , andL2Sn

n (u) is a Laguerre polynomial.
The continuum state wavefunctions of momentumq normalized in a box of length

L(−L < x < L), are given byφq(x) = (2L)−1/2f (η; ξ), η = q/γ and

f (η; ξ) =
∣∣∣∣∣0( 1

2 − σ0 − iη)

0(2iη)

∣∣∣∣∣ exp{−σ0 exp [−(ξ − ξ0)] exp [−iη(ξ − ξ0)]}

×9
(

1
2 − σ0 + iη, 1 + 2iη, 2σ0 exp [−(ξ − ξ0)]

)
(24)

where9(a, b, z) is a confluent hypergeometric function that vanishes atz → ∞. Again
while evaluating the sums we have to invoke the thermodynamic limit i.e.6k →
(L/π)

∫ ∞
0 dk and perform the sums over phonon states for a Debye model i.e.6p →

(3Ns/ω
3
d)

∫ ωd

0 ω2
p dωp. This leads to a real part and a imaginary part of theT matrix. The

transition probability from the initial continuum to final BS under the emission of phonon
may be given by the golden rule

Rcn = 2π

h̄
〈ψf |ReT |2ψi〉δ(Ef − Ei) neq (25)

where for the BS energyEi

neq = exp(βgµ − βsEi).

The real part of theT matrix gives the transition probabilityRcn and hence the sticking
coefficient normalized by the flux of incoming particleτL defined byτL = 2Lm/h̄k, and
the inverse of the imaginary part gives the lifetimeτs of the scattering state. The flux of all
incoming particles is given by

∑
q>0(2Lm/h̄q) Rqn. Using equation (25) we have for the

continuum to the BS transition the total sticking coefficient given by

S = 16π4r2

[
C

/( ∫ ∞

0
F(x) dx

)]2

neq (26)

where

C = sinh(2π
√

s2)

sinh2(π
√

s2) + cosh2(πσ0)
|0( 1

2 + σ0 + i
√

s2)|2[s2 + (σ0 − n − 1
2)2]2s2

ns
2 (27)

and

F(x) = sinh(2π
√

x)

sinh2(π
√

x) + cosh2(πσ0)
|0( 1

2 + σ0 + i
√

x)|2[x + (σ0 − n − 1
2)2]2 x − s2

n + s2

s2

(28)

with

neq = exp|βgµ| exp[−δs2/r]
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where δ = βsh̄ωd and βs = 1/kβTs . The inverse of the imaginary part of theT matrix
given by equation (20) is used to obtain the lifetimeτs as

τs = h

kBTgs2

[( ∫ ∞

0
f (y) dy

)/( ∫ ∞

0
f (x) dx

)]
exp(βsEn − βgµ) (29)

where

f (x) = sinh(2π
√

x)

sinh2(π
√

x) + cosh2(πσ0)
|0( 1

2 + σ0 + i
√

x)|2[x + (σ0 − n − 1
2)2]2

×
[
r + s2 − s2

n + x

2
ln

∣∣∣∣ r

x − s2
n + s2

∣∣∣∣] (30)

and

f (y) = sinh(2π
√

y)

sinh2(π
√

y) + cosh2(πσ0)
|0( 1

2 + σ0 + i
√

y)|2[y + (σ0 − n − 1
2)2]2[x − s2

n + s2].

(31)

It may be noted that the BS lifetimeτs given by equation (29) has been normalized by
the time of interaction of the incident particle with the surface.

4. Numerical evaluation

The sticking coefficients of4He atoms on alkali-halide crystals in the quantum-mechanical
regime has been evaluated underT matrix formalism. It has already been pointed out that
the lower-order DWBA on the phonon-mediated adsorption is inadequate for the calculation
of sticking coefficients. In our earlier calculations [5] we have shown that the BS energy
strongly depends on the substrate temperatureTs . The results obtained from our theoretical
calculations for the BS energy and normalized transient timeτs and the corresponding Morse
parameters are given in tables 1 and 2.

Table 1. Morse potential parameters for He–LiF and He–NaF systems.

(γ −1) U0 h̄ωd/KB

Systems (A0) (K) (K) σ0 r m/Ms

He–LiF 1.09 81.75 730 4.023 144.55 0.152
He–NaF 0.97 77.78 450 3.491 70.496 0.0952

We fit the experimental and Morse potential parameters listed in tables 1 and 2 to
perform the numerical evaluations of the substrate temperatures and consequently the
normalized low-temperature lifetimes of different BS for the He–LiF and He–NaF systems.
The lifetimes evaluated for low substrate temperatures are found to be long, making the
observation of BS possible within a typical experimental limit [9, 10] and are therefore
important from an experimental standpoint. Our theoretical BS energies given in table 2 are
compared with the experimental results, and corresponding substrate temperatures are also
evaluated. The evaluations in the present case have been made numerically from the BS
pole of theT matrix. It has been found that the substrate temperaturesTs evaluated from
our theoretical calculations are in good agreement with the findings reported earlier [8] for
He–LiF and He–NaF systems. The calculations are then performed to evaluate the lifetimes
τs by varying the substrate temperature (table 2) to match the experiment of interest [10–12],
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Table 2. BS energies and transient times in a given temperature range.

Substrate Transient Desorption
temperature range Theoretical BS Experimental BS time time [8]

Systems (K) n (K) (K) ( ts ) (s) (t0
d ) (s)

He–LiF 34 0 62.69 68.47 7.87× 10−9 1.53× 10−8

8 1 32.16 28.55 2.17× 10−8 1.36× 10−5

2 2 11.72 9.05 8.27× 10−7 2.62× 10−4

1 3 1.38 2.44 1.50× 10−5 0.97× 10−3

He–NaF 18 0 57.10 57.10 1.92× 10−9 2.85× 10−8

5 1 25.30 21.70 8.94× 10−7 2.89× 10−6

1 2 6.27 6.27 7.11× 10−3 6.18× 10−3

e.g. the calculations of residence times in the BS at low surface temperatures. We assume
that a particle is captured once it has been scattered into a BS. From an experimental
standpoint the incident particle may be captured if the residence time in the BS is long
compared with the collision time at low substrate temperatures which is of the order of
the phonon vibration time, 10−13 s, for a phonon-mediated inelastic scattering system [13].
This happens at low substrate temperatures.

5. Discussion

It is evident from table 2 that forn = 0, 1 and 2 for a potential well depth of 89 K and
77.78 K and a scattering strengthγ −1 of 1.09 Å and 0.97Å, for LiF and NaF systems,
respectively, the theoretical BS energies from the Morse potential give rise to sticking times
ranging between 10−3 and 10−9 s. This is much higher than the phonon vibration time
(10−13 s) as mentioned earlier and is of the order of reported desorption timetd calculated
from the Frenkel–Arrhenius formulatd = t0

d exp(Q/kBT ), whereQ is the activation energy.
The above discussion supports the fact that, the larger the probability of sticking, the lower
is the degree of desorption. Thus at higher gas temperatures the particle scattered from the
continuum to these negative energy BS will be captured with a long lifetime, implying that
the subsequent desorption is a slow process. This is certainly valid for situations in which
the sticking probability is small and is illustrated in figures 1 and 2.

Figure 1 shows the sticking probability of the4He versus the temperature of incident
particle energy for LiF and NaF substrates for different BS. The variation in BS lifetime
with the substrate temperature is shown in figure 2.

We note from figure 1 that the sticking coefficient is a relatively smoothly varying
function of the incident energy for the He–LiF and He–NaF systems. However, as the entry
into the BS is a phonon-mediated process, the probability of capture by a BS increases with
increasing temperature of the incident particles. At higher temperatures, higher-order effects
become more important and more BS channels become probable. The major experimental
problem is that at higher temperatures the residence time on the surface for the particles
becomes too short to enable accurate measurements of the sticking to be made.

We have chosen the Morse potential for the gas–solid system in the present case as
it is the most popular surface potential for fitting a limited number of parameters to the
gas–surface scattering for which all wavefunctions and the BS energies can be determined
analytically. The results obtained for other potentials such as the Lennard–Jones potential
do not give a satisfactory fit to the BS energy and are therefore not considered in the present
case [14].
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Figure 1. Variation in sticking coefficient with gas temperature for the He–LiF and He–NaF
systems for different BS. Curves (a), (b), (c) and (d) are for He–LiF forn = 0, 1, 2 and 3,
respectively. Curves (e), (f) and (g) are for He–NaF forn = 0, 1 and 2, respectively.

Figure 2. The variation in BS lifetimeτs with substrate temperature. Curve (a) is for He–LiF
and curve (b) for He–NaF systems, both forn = 0.

It may be noted from table 2 that the present theory which takes into account the higher-
order term is less accurate for reproducing the substrate temperatures for higher BS (n = 2
and 3 for LiF andn = 2 for NaF). This again supports the facts that at very low temperatures
the higher-order contributions constitute a smaller correction to the Born approximation and
the substrate temperatures corresponding to higher BS may not be obtained very precisely.
The fourth BS (n = 3) for the He–NaF system could not, however, be resolved with
Morse potential parameters as the corresponding surface temperature is very small and the
conditionn < σ0 − 1

2 is not satisfied. This is also supported by the earlier finding using the
same potential [8].
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6. Conclusion

From the above discussion we conclude that our theory, which takes into account the higher-
order contribution to the sticking coefficient of a phonon-mediated process, predicts a non-
zero capture even at higher temperatures. Although the residence times on the surface for the
He–LiF and He–NaF systems become much shorter at higher temperatures making accurate
measurement of sticking coefficients difficult, the calculations presented here suggest that,
at higher temperatures, capture into the physisorption BS is possible and can be monitored
through careful measurements of the specular beam. The results so obtained depend on the
nature of the potential, its well depth and the interaction strength. However, the multiphonon
process which has not been considered in the present work will definitely improve the results.
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